
I [I -

October 1989

A/_/:-4,'Z
UILU-ENG-89-2234

CSG-111

COORDINATED SCIENCE LABORATORY
College of Engineering

/'/J 4 :; .4-y'.

/4C/',,J.

/_-" ','4_
T3

NOVEL TECHNIQUES FOR
DATA DECOMPOSITION
AND LOAD BALANCING
FOR PARALLEL PROCESSING
OF VISION SYSTEMS:
IMPLEMENTATION
AND EVALUATION
USING A MOTION
ESTIMATION SYSTEM

Alok N. Choudhary

Mun K. Leung

Thomas S. Huang
Janak H. Patel

(NA£A-C:-t-]C£_'_4'I) N_r _,. T":_.'4_T...'I_ "" _: ,_ r'ATA :'..:' , #- .,. " 1-,,.

UECQMPOSITInN A'."4_, LQA _'' -'A.I_A'_LT'_T; =i_i"

PAR^LLLL P,KqLFSSINb ._c VtSI'?_ ,v >r_, _:

IMPLCM_:NIATIL;H A_r" !:V!L!li:i'riqi4 i.j'_[*_ & ,r |[.;_ UnGl:_5

ESTIM_,TICIN SYSTEM (Illinoi£ Univ.) ':' V q:;/'_._,) 0P3q=:_,._

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAION

Approved for Public Release. Distribution Unlimited.

m

aml

UNCLA.5 S I F/LED
SECURitY CL.ASS_FICAI'_ON O_ TInS PAGE

I

la. REPORT 'SECURITY CLASSIFICATION

Unc lassi fled

2a. SECURITY CLASSiFICATiON AUTHORITY

REPORT
I

2b. DECLAS$1FICATION / DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-89-2234 (CSG-III)

6,1. NAME OF PERFORMING ORGANIZATION

Coordinated Science Lab

University of Illinois
I

6r. ADDRESS (G/y, State, ar_ ZIP Code)

ii01 W. Springfield Avenue

Urbana, IL 61801

_. NAME OF FUNDING/SPONSORING
ORGANIZATION

NASA / NSF
i

. ADDRESS (City, State, an ZIPCode)

I I

DOCUM ENTATION PAGE
I

lb. RESTRICTIVE NU_KINGS

None

3. DISTRIBUTION / AVAILABILITY OF REI_ORT

, Approved for public release;

distribution unlimited

' S. MONITORING OI_GAN'IZATION REPORT NUMBER(S)

6b. OFFICE SYMBOL

(ff a_olkab_e)

N/A

I

IBbOFFICESYMBOL

I (II "pplicaM .)

see 7b

11TITLE _luo_cu#tyOa_fication)
Novel Techniques for Data Decomposition and

i| I

7a. NAME OF MONITORING 'ORGANIZATION

NASA / NSF

7b. ADDRESS (CJty, Stere, end ZlP Code)
NASA Langley Research Center
Mampton, VA 23665

Notional Science Foundation

I_Q_ Q _r@et. NW / Wash_noton Dr. pnc;qo
9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

NASA 1-613

NSF IRa 87-0_;400
10. SOURCE OF FUNDING NUI_BERS

I

PROGRAM IPR?JECT !TASK
ELEMENT NO. • NO.

i

Load Balancing for Parallel

WORK UNIT

ACCESSION NO.

Processing of

Vision System: Implementation and Evaluation using a Motion Estimation System

2 AUTHOR(S)I . PERSONAL

Alok N. Choudhary,

13a. TYPE OF REPORT

Technical

16. SUPPLEMENTARY NOTATION

Mun K. Le_na. Thomas S. Huana and Janmk H, Parel

FROM TO, _9/1 O 4_'_

,7 COSAT, OOES I 18. SUBJECT TERMS (CocO'hue on reverse if w_cenaty and identify by block numbed

FIELD I GROUP i SUB-GROUP J parallel processing, vision, motion, stereoI I load balancing, hypercube

:9. ABSTRACT (Continue on reverse ifnecess_r/ an_/_enti_ by b/ock number)

Computer vision systems employ a sequence of vision algorithms in which the output of an algo-

rithm is the input of the next algorithm in the _'ac[uence. AJgodthms that constitute such systems exhibit
vastly different computational characteristics, and therefore, require different data decomposition tech-

niques and efficient load balancing techniques for parallel implementation. However, since the input data

for a task is produced as the output data of the previous task, this information can be exploited to perform

knowledge based dam decomposition and load balancing.

First, this paper presents algorithms for a motion estimation system. The motion estimation is based

on the point correspondence between the involved images which are a sequence of stereo image pairs. We

propose algorithms to obtain point correspondences by matching feature points among stereo image pairs at

any two consecutive time instants. Furthermore, the proposed algorithms employ non-iteradve procedures,

which results in saving considerable amount of computation dme. The system consists of the following

steps: 1) _waction of features, 2) stereo match of images in one time instant, 3) time match of images from

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 121. ABSTRACT SECURI_f' CLASSIFICATION -

I:R]UNCLASSIFIED/UNLIMITED 1"1 SAME AS RPT. r'! OnC USERS ! Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL Inb.TELEPHONE0_ Aree Code) J22¢. OFFICE sYMBoL
I I
• II I I I

Do FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECUR!TY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

UNCLAS S I FI ED

UNCLASSIFIED
i iS'l[¢URli_ CL_SimCA_ON OPTHI$ PAol

i

consecutive t/me instants, 4) stereo match to compute final unambiguous points and, 5) computation of
motion parameters. Second, this paper presents several techniques to perform static and dynamic load
balancing for computer vision system applications. These techniques are novel because they capture the
computational requirements of a task by examining the data when it is produced. Furthermore, these tech-
niques can be applied to many vision systems because a great deal of algorithms in different systems are
either same, or have similar computational characteristics. Finally, these techniques are evaluated by
applying them to a parallel implementation of the algorithms of the motion estimation system. The main
issues considered in parallel implementation are utilization of processors, communication among proces-
sors, and load balancing. It is shown that the performance gains when these data decomposition and load
balancing techniques arc used, are significant, and the overhead of using these techniques is minimal. The
performance is evaluated by implementing the algorithms on a hypercube multiprocessor system.

. US97 ASSlrIED
SIr(:US|TY ¢I..ASS|F|¢ATIOH OF THiS PAGE

Novel Techniques for Data Decomposition and Load Balancing
for Parallel Processing of Vision Systems:

Implementation and Evaluation using a Motion Estimation System

Alok N. Choudhary, Mun K. Leung, Thomas S. Huang and Janak H. Patel

Coordinated Science Laboratory
University of Illinois
1101 W. Springfield
Urbana, IL 61801

Abstract

Computer vision systems employ a sequence of vision algorithms in which the output of an algo-
rithm is the input of the next algorithm in the sequence. Algorithms that constitute such systems exhibit
vastly different computational characteristics, and therefore, require different data decomposition tech-
niques and efficient load balancing techniques for parallel implementation. However, since the input data
for a task is produced as the output data of the previous task, this information can be exploited to perform
knowledge based data decomposition and load balancing.

First, this paper presents algorithms for a motion estimation system. The motion estimation is based
on the point correspondence between the involved images which are a sequence of stereo image pairs. We
propose algorithms to obtain point correspondences by matching feature points among stereo image pairs at
any two consecutive time instants. Furthermore, the proposed algorithms employ non-iterative procedures,
which results in saving considerable amount of computation time. The system consists of the<f0119wing
steps: 1) extraction of features, 2) stereo match of images in one time instant, 3) time match of images from
consecutive time instants, 4) stereo match to compute final unambiguous points and, 5) computation of
motion parameters. Second, this paper presents several techniques to perform static and dynamic load
balancing for computer vision system applications. These techniques are novel because they capture the
computational requirements of a task by examining the data when it is produced. Furthermore, these tech-
niques can be applied to many vision systems because a great deal of algorithms in different systems are
either same, or have similar computational characteristics. Finally, these techniques are evaluated by
applying them to a parallel implementation of the algorithms of the motion estimation system. The main
issues considered in parallel implementation are utilization of processors, communication among proces-
sors, and load balancing. It is shown that the performance gains when these data decomposition and load
balancing techniques are used, are significant, and the overhead of using these techniques is minimal. The
performance is evaluated by implementing the algorithms on a hypercube multiprocessor system.

1. Introduction

Computer vision tasks employ a broad range of algorithms. In vision system many algorithms with

different characteristics and computational requirements are used in a sequence where output of one algo-

rithm becomes the input of the next algorithm in the sequence [1,2]. An example of such a system is a

motion estimation systems. In such a system, a sequence of images of a scene are used to compute the

motion parameters of a moving object in the scene. Figure 1 shows the computational flow for a motion

estimation system in which stereo images (L/m and R/m) at each time frame are used as the input to the

This mman:h wu m_ in pan by National Aenmutics tad Space A&ninismuion Under Contract NASA NAG-I-613,
and in pan by N_ional Science Foundation Grant IR187-05400.

system.Briefly,theinvolvedtasks(oralgorithms)inthissystemareasfollows.The firstalgorithmiscom-

putationofzerocrossingsoftheimages(edgedetection(L=cand R_)). The zerocrossingsareusedas

fcalm_pointsforbothstereoand timematching.The stereomatchalgorithmprovidespointstocompute

3-D informationabout the objectin the scene.Using thesematched points(Lsm and Rsra),the

correspondingpoinm intheimageinthenextdineframe(Ltm)arelocatedand thistaskisperformedby

timematchalgorithm.Again,sternematchisusedtoobtainthecorresponding3-D pointsinthenextimage

frame.Thesetwo setsofpointsIxovideinformationtocomputethemotionparameters.The aboveprocess

isrepeatedforeachnew setofinputimageframe.

The computationalrequirementsforsuchvisionsystemsaretremendous[2,3].Not onlydoessucha

systemrequirespowerfulparallelprocessingcapabilitiesbut,toobtainanysignificantspecdupsandperfor-

mance gainsfromparallelprocessingoversequential_ing, efficientdatadecompositionand load

balancing need to be employed at each step in the system.

First, this paper presents algorithms for a motion estimation system. The algorithms are non-iterative,

and obtain matched features points among stereo images at any two consecutive time instants. The system

consists of the following steps: 1) extraction of features, 2) stereo match of images in one time instant, 3)

time match of images from consecutive time instants, 4) stereo match to compute final unambiguous points

Lim(t/+A_

Rim(t_

zc Rzc()
w

SM

zc

1) SM

ZC: Convolutionand Zero Crossings

'I'M SM

SM : Stereo Match

TM: Time Match MP: Motion ParameterComputation

Figure I •Computation flow formotion estimation

MP

NiP

and, 5)computationof motion parameters.Sincezero crossingspointsare used asthe featuresformatch-

ing,thereislessdatainvolvedinthematching processso thatconsiderableamount ofsavinginthecompu-

tationtimescan be achievedinsolvingthecorrespondenceproblem.The algorithmsare appliedtorealout-

door images, and are shown to perform well.

Second, we present techniques to perform efficient data decomposition and load balancing for vision

systems for medium to large grain parallelism. The important characteristics of these techniques are that

they are general enough to apply to most vision systems, and they use statistics and knowledge from execu-

tion of the preceding task to perform data decomposition and load balancing for the current task. For exam-

ple, in the motion estimation system sufficient knowledge can be obtained about the output data from the

zero crossing step to perform data decomposition and load balancing for the stereo matching step. The

advantages of such techniques are: FL-st, they use characteristics of the involved tasks and data, and there-

fore, work well no matter how data changes. Second, many vision systems consist of such tasks, and exhi-

bit the above described computation flow, and therefore, these techniques can be used in many systems

(e.g.,objectrecognition,opticalflowetc.)[2].

Finally,theperformance of theproposed techniquesisevaluatedby usinga parallelimplementation

of the motion estimationsystem algorithmson a hypercube multiprocessorsystem.The resultsshow that

using uniform partitioningwithoutconsideringthe computationsinvolved,parallelprocessingdoes not

providesignificantperformance improvements over sequentialprocessing.Furthermore,by applying the

proposed datadecomposition and loadbalancingtechniques,significantperformance gains(asmuch as 6

fold)can be obtainedover uniformpartitioning.

This paperisorganizedas follows.InSection2 we presentthealgorithmsforeach stepinthemotion

estimationsystem [4].These algorithmswillprovideinsightintotheinvolvedcomputationsinthesystem

and providea framework forthediscussioninthefollowingsections.Section3 conta/nstheproposed load

balancing and data decomposition techniques. Some examples are also presented to illustrate the tech-

niques. In Section 4 we present parallel implementation of these algorithms on a hypercube (Intel iPSC/2)

multiprocessor. We discuss the performance results for each of these algorithms as well as present the per-

formance of the data decomposition, and load balancing schemes. Some of these techniques have been

applied to oth_ vision systems and have been shown to work well [5]. Finally, concluding remarks are

presented.

2. Motion Estimation Algorithms

This Section describes the steps in the motion estimation system. A detailed description of the

involved computations is included in order to understand the characteristics of such algorithms. In general,

the problem of motion estimation involves two sub-problems which are 1) matching feature points between

images and 2) solving the motion parameters based on the point correspondences. In this paper, we will

not discuss the last process, calculation of motion parameters, and a discussion on techniques to compute

motion parameters can be found in [6"]. Nevertheless, we simply use the techniques to solve the motion

parameters in the last process of our algorithms.

The matching algorithm is used to find point correspondences in pairs of stereo images (of size

256 x 256) at two consecutive time instants (ti_ 1 and ti). Typical stereo image pairs at two consecutive

time instants (t7 and ts) used in this paper are shown in Figure 2, which are outdoor scenes of a truck at

different locations. These images are segmented out from the corresponding larger images of size

1024 X 1024. The imaging setup employed in taking the images is the parallel axis method as shown in

Figure 3. The algorithm consists of two major processes which are 1) extracting feature points and 2)

matching. The feature points used in the matching process are edge points which are considered as the

more reliable features obtained from an image. The matching process is done by employing non-iterative

procedures with the heuristic of limited displacement (or disparity) between frames. The use of edge

points and non-iterative procedures with the limited displacement (or disparity) assumption saves a consid-

erable amount of computation in solving the correspondence problem.

2.1. Feature Points

The feature points used in this algorithm are zero crossing points of an image. We employ the

method suggested by Huertas and Medioni [7] to extract the zero crossings of an image. In their method,

they decomposed the 2-D Laplacian-of-Gaussian mask into a sum of two separable filters which was used

to convolve with an image. Then, they used 11 predicates, which defined a total of 24 edge positions, to

determine edge locations. In order to eliminate non-significant zero crossing points and maintain enough

details, we threshold the zero crossing image based on the intensity gradient at each zero crossing point.

Figure 4 depicts the thresholded zero crossing images of the pictures shown in Figure 2.

4

(a) Left and right images at time instant t7

03) Left and right images at time instant t 8
Figure 2 : Images set of t 7 and t 8

ORIGINAl.: PAGE

BLACK AND WHITE PHOTOGRAPH

P (x, y, z)

Optical Axis

Le_ image

Optical Axis

/eft focal point 0

I_., Baseline
i T

I (x,y)
t

right focal point

,J
"1

Right Image

X Z

Y

Figure 3 : Tmaginggeometryof theparallel axis method

6

.o

°.

e
o

'° ";i

ORI L 'A.GEIS
Ol_ POOR QUALITY

o ':," _.'

°.

o o
• o o. ,P

I °

(a) Left and right zero cn)ss_ngs a¢ time insl,Tmt_7

"a I

. I_ "_ % . I II.

• [! " .,; . "','._ . r:
7-

•-, "

Co) Left and right zero crossings az dmc inslani t 8
Figure 4 : Zero crossings of images in Figure 2, w = 5 pixels and threshold =70

Having obtained the zero crossings of an image, we associate each zero crossing point with one of

the sixteen possible zero crossing patterns as shown in Figure 5. The use of these sixteen zero crossing pat-

terns was first suggested and used by Kim and Aggarwal in their point correspondence algorithm [8].

Similar to their algorithm, we use all these possible zero crossing patterns, except pattern Co) in Figure 5, as

the matching feature_. The horizontal pattern (pattern Co)) is excluded in the stereo matching because the

search for matching is done on the same scan line and causes ambiguous matches. Consequently, in order

to have consistent matching features, the zero crossing points with the same pattern (pattern Co)) are also

excluded in the time matching process. The patterns are not used directly; instead, we assign each pattern a

value (as suggested in [8]) according to its local connectivity. These pattern values are useful to measure

the similarity of zero crossing patterns and are used in the matching process. The values are calculated as

follows:

a) For a zero crossing point location (p,q), its eight neighbors are numbered as shown in Figure 6.

b) The value of a given zero czossing point (forming one of the sixteen patterns) is equal to the sum of

the two numbers corresponding to its two attached neighbors.

Examples :

The value ofPattem (d) is 1 +3-4.

The value of Pattern (j) is 2+ 6= 8.

e) If a zero crossing point has only one attached neighbor or none at all, the assigned value is 20.

The similarity between any two zero crossing points is based on the directional difference of their

zero crossing patterns. For example, the directional difference between patterns (a) and (e) in Figure 5 is 2,

and the difference between patterns (a) and (g) is 4. The directional difference between any two direction

values (e.g. D 1 and D 2) is calculated as follows:

DIFF'= I D1 -D2 I

if (DIFF > 4), DIFF = I 8- DIFF I

In our matching process, the use of directional difference (or zero crossing pattern values) in finding

matched point pairs is through the expression of directional difference weight as shown below:

(a) ('o) (c) (d)

(*) (0 (Z) (h)

(i) U) (k) (I)

(m) (n) (o) (1,)

Hgu_ 5 :Zero crossing pam_ms

3

4

2 1

(P,q)

6 7

Figure 6 : Value assignment for a zero crossing pattern

1

Wadif= 1 + DIFF (1)

2.2. Matching

Once zero crossings are extracted in all the involved images, the matching process is applied to find

point correspondences among the images (two stereo image pairs at two consecutive time instants, i. e.

ti_ 1 and ti). The evidences used in this process to obtain matched point pairs are the normalized correla-

tion coefficient and the directional difference weight [8]; furthermore, in order to limit the search space, the

heuristic of limited displacement or disparity between frames is exploited. The matching process consists

of six steps as follows:

1) Perform stereo (fi'om left to fight) matching in the ti-I stereo image pair.

2) Obtain unambiguous matched point pairs by eliminating multiple matches.

3) Perform time matching between the unambiguous matched points in the left ti_ 1 image and the

feature points of the left ti image.

4) Obtain unambiguous matched point pairs from the time matched points by eliminating multiple time

matches.

5) Perform stereo matching between the unambiguous matched points (obtained in step (4)) in the left

ti image and the feature points of the right ti image.

6) Obtain unambiguous matched point pairs from the results of ti stereo matching by eliminating multi-

ple matches.

The results of the above steps are two sets of unambiguous stereo matched point pairs at time instant

ti-1 and ti. These two sets arc related through steps (3) and (4), the matching over time; therefore, we can

pick out all the unambiguous matched points that correspond to each other among the two stereo image

pairs at time instants ti-1 and ti. In the remaining sub-section, we are going to discuss the processes in

detail. The discussion is divided into three major sub-sections which are: i) stereo matching, ii) time

matching and iii) elimination of multiple matches.

10

2.2.1. Stereo Matching

This is the sub-process to obtain the matched point in the fight image for each matchable zero cross-

ing point in the corresponding left image of the same stereo pair. Since the imaging setup is the parallel

axis method, we exploit the epipolar line constraint in solving the stereo matching problem. As the result,

we have 1-dimensional search space instead of 2-dimensional search space in the stereo matching process.

Figure 7 shows a typical search space in the fight image for a matchable zero crossing point in the left

image; the search space is on the left side of the transferred location of that particular left image zero cross-

ing point. The dm_ in Figure 7 is the maximum possible disparity (heuristic of limited disparity between

frames) between the left and fight images.

Let Spt be the set of all non-horizontal zero crossing points in the fight image within the search

space of a zero crossing point in the left image. The stereo matching process is as follows:

For each point in S_,

i) Calculate the normalized correlation coefficient with a template size of a x a between the grey level

images of left and fight at the corresponding locations. The normalized correlation coefficient is cal-

culated by using the following expression :

ij
P_ = (2)

whe_re

Ixij is the grey value at point (i,j) in the left image.

rxij is the grey value at point (i,j) in the fight image.

/X is the mean grey value of the template in the left image.

r'x is the mean grey value of the template in the fight image.

ii) If the normalized correlation value Ps is less a threshold value thrsh p,, we discarded that particular

point in the sea_h space in the remaining steps.

iii) Calculate the directional difference weight (Wddif(stereo)) between the left and the fight zero cross-

ing point (within the search space) according to Equation (1).

11

iv) Obtain the total weight as the combination of the correlation coefficient and the directional differ-

enc¢ weight.

w s = a x Ps + b x wddif (s_reo), where a + b = 1. (3)

v) Among all elements of Srl, the point with the maximum total weight ws is considered as the

matched point for the corresponding zero crossing point in the left image.

2.2.2. Time Matching

This is the sub-process to obtain the matched point in the left ti image for each candidate zero cross-

ing point in the corresponding left ti-1 image. Similar to the stereo matching process, we exploit the

heuristic of limited displacement (instead of disparity) between frames in solving the time matching prob-

lem. We assume that the total motion between the ti-i and ti frames is within fpixels in vertical direction

and h pixels (from right to left) in horizontal direction. Hence, the search space for each candidate zero

crossing point in the left ti-1 image is a window of size f × h pixels on the left size of the transferred

location in the left ti image as shown in Figure 8. Any zero crossing point (except horizontal ones) inside

this window is a potential match point for the corresponding candidate zero crossing point in the left ti_ 1

image. The time matching process is as follows:

For each non-horizontal zero crossing point in the left t/ image within the search space of a zero

crossing point in the left ti_ 1 image,

i) Calculate the normalized correlation coefficient with a template size of t x t between the grey level

image of ti_ 1 and t i at the corresponding locations. The normalized correlation coefficient is calcu-

by using the following expression :

ZZcxis - x--)(yij- y-)
ij

Pt = (4)

where

xij is the grey value at point (i,j) in the ti-1 image.

Yij is the grey value at point (i,j) in the ti image.

X is the mean grey value of the template in the ti_ 1 image.

12

transferred

coordinates of A

A
--- d max'--_

Left image Right image

Figure 7 : Search space for stereo matching

transferred

coordinates of A

eA
O f

h

tl image

search window

(f x h)

t2 image

Figure 8 : Search space for time matching

13

isthe mean grey value of the template in the ti image.

ii) IfthenormalizedcorrelationcoefficientPt islessthanathresholdvaluethrshdp,,we discardthat

particularpointintheremainingsteps.

iii) Calculatethedirectionaldifferenceweight(Wdd_(ti_u_)) betweeJltheleftti-iand thelefttizero

crossingpoint(withinthesearchspace)accordingtoEquation(I).

iv) Obtainthetotalweightasthecombinationof thecorrelationcoefficientand thedirectionaldiffer-

enceweight.

wt - c × Pt + d × w,_a//(t/r_), where c + d = I. (5)

v) Withina searchwindow inthelefttiimage,thezerocrossingpointwiththemaximum totalweight

w tvalueisconsideredasthematchpointforthecorrespondingzerocrossingpointintheleftti-I

image.

22.3. Elimination of Multiple Matches

After the sub-process of either stereo matching or time matching, there may be multiple matches for

some zero crossing points in either the left image or the left ti-1 image. In this paper, we use the same

procedure in eliminating both types (stereo or time) of multiple matches except different sizes of the search

window are exploited. For stereo matching, we use a I-D search window of size dmax as shown in Figure

9(a); on the other hand, for time matching, we use a search window of size f x h as shown in Figure 9(b).

The remaining steps of the procedure for determining unambiguous matched points are as follows:

i) At the position of a multiple match in either the left image for stereo matching or the left ti_ 1 image

for time matching, open a search window either with a size of dmax or with a size off × h respec-

tively.

ii) Within the search window, locate all the positions that have the same (multiple) match.

iii) If all the positions are within the neighborhood region rneigh, calculate the total weight (w s or wt)

according to Equation (3) or (5) (depending on whether we try to eliminate stereo multiple matches

or time multiple matches). The position with the highest value in its total weight is regarded as the

correct match.

14

' I_matched pt.

I IB IB IB I

• max

Leftimage Right image

(a) Stereo case

A Multiple matched pt.

* hi.
search window

(f x h)

Left t i-1 image Left t. image
l

(b) Time case

Figure 9 : Seaxch windows for elimination of multiple matches

15

iv) If oneormore positions are outside the neighborhood region rneigh, we use the disambiguation pro-

cedure described in Section 2.2.3.1 to resolve the multiple matches.

v) If multiple matches still exist after the application of the above steps, they all are discarded from the

match set.

2.2.3.1. Disambiguation

We only use this procedure, ff step (iv) in the above discussion is true. In this procedure, the neigh-

boring unambiguous matched points around a multiple matched point are used as one of the supporting evi-

dences in determining the correct match. The other evidences used are the normalized correlation

coefficient and the directional difference weight. The steps are as follows:

i) At each position, calculate the normalized correlation coefficient (Ps for stereo matching or Pt for

time matching) and the directional difference weight (Wdd_f(aereo) for stereo matching, or

Wdd/f (t/me) for time matching).

ii) Assign a correlation coefficient rank, Rcc, and zero crossing pattern rank, Rzc p, to each position

according to its normalized correlation coefficient (Ps or Pt) and directional difference weight

(Wddif(stereo) or Wdd0"(t/me))- The position with the highest value in normalized correlation

coefficient or directional difference weight has the highest rank in Rcc or Rzc p.

iii) At each position, check for unambiguous matched neighbors. If it has two attached unambiguous

matched neighbors, a neighbor weight neighwt of 3 is assigned. On the other hand, ff it has only

one attached unambiguous matched neighbor, a neighbor weight neighs of 2 is assigned.

iv) At each position, open a check window of size 5 × 5 but excluding the center 3 x 3 region as

shown in Figure 10 and count the number of unambiguous matched points, n/o_p.

v) At each position, calculate the total possibifity as the sum of the ranks, the weight and the number.

poss_ = Rcc + R_l,w + neighwt + numsmp (6)

vi) The position with the highestposswt value is considered as the correct match.

5

.2'

L., 5 =J
i TM v i

L

16

central region not used

FigureI0:Check window fordisambiguadon

2.3.ExperimentalResults

This algorithm has been tested on two stereo image pairs shown in Figure 2. The zero crossings are

first exwactedfrom the images as the feature pointsand the resultsare shownin Figure 3. We assigna zero

crossing pattern value to each zero crossing point; then, the matching procedures are applied to the image

pairs. In our experiment, we have the following assumptions on the images :

a) The maximum possible disparity dmax is assumed to be 20 pixels.

b) The total motion between time frames is f = 5 pixels in vertical motion and h = 20 pixels in hor-

izontal motion.

c) The template size used in the stereo matching is 5 x 5 pixels (a = 5 pixels).

d) The template size used in the time matching is 10 x 10 pixels (t = 10 pixels).

e) Both thrshdp, and thrshdp, are equal to 0.55.

t') We treat both the normalized correlation coefficient (Ps or Pt) and the zero crossing pattern weight

(zcw s or zcwt) equally; therefore, a = b = c = d = 0.5 are used in both Equations (3) and (5).

17

g) In the procedure of elimination of multiple matches, the neighborhood region rneigh is 5 pixels for

stereo matching and 5 × 5 pixels for time matching.

Figure 11 shows the stereo matching results of the ti-1 (tT) stereo image pair. We can observe that

there are more matched points in the left image than in the right image. The extra points in the left image

are due to multiple matches. In order to eliminate the the multiple matches, we apply the procedures of

efimination of multiple matches to the t7 stereo matched points and the results are shown in Figure 12.

Then, using these unambiguous matched points in the left ti-I (t7) image as the candidate points, we

match them with the feature points of left t i (iS) image by using the time matching procedures and the

results are depicted in Figure 13. The unambiguous time matched points after the elimination of multiple

matches are shown in Figure 14. Having the unambiguous matched points in the left t8 image, we match

them with the feature points of right t8 image and Figure 15 shows the unambiguous matched points after

the elimination of multiple matches. With these two sets of unambiguous stereo matched points at t 7 and

t 8, we can pick out all the unambiguous matched points that correspond to each other among the four

images. The results are depicted in Figure 16. From these two sets of stereo matched points, we can calcu-

late the 3-D position of each matched point at t7 and t8 by using triangulation. The motion parameters can

be estimated based on the 3-D points from t7 and t8.

3. Data Decomposition and Load Balancing Techniques

In a multiprocessor system the simplest method to implement a task in parallel is to decompose the

data and equally and uniformly among the processors. In a completely deterministic computation in which

the computation is independent of the input data such schemes perform well, and normally, the processing

time is comparable on all the processors. That is, efficient utili_tion and load balancing can be obtained.

For example, regular algorithms such as convolutions, filtering or FFT exhibit such properties. The amount

of computation to obtain each output point is the same across all input data. Therefore, uniform decomposi-

tion of data results in load balanced implementation.

Most other algorithms do not exhibit a regular structure, and the involved computation is normally

data dependent. Furthermore, the computation is not uniformly distributed across the input domain. In

such cases, a simple decomposition of data does not provide efficient mapping, and results in poor utiliza-

tion and low speedups. Also, the performance cannot be predicted for a given number of processors, and a

18

Figure 11 : Results of stereo matching of t7 stereo image pair

Figure 12 : Unambiguous matched points of the t7 stereo image pair

ORIGINAL PAGE

I]I.ACK AI',;D WHITE PHOTOGRAPH

19

Figure 13 :Results of time matching between 17 and 18

Figure 14 : Unambiguous time matched points of the t7

ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPH"

20

Figure 15 : Unambiguous matched points of matched points of lhc t 8
stereo image pair (after time matching wifll 17)

ORIGI,_4AL PA_'_E.:

BLACK AND WHITE pI4OTG(IRAP_

21

(a) : At time instant t7

(a) : At time instant t 8
Figure 16 : Unambiguous matched points of Figure 2

• -- F" ,:-:r GRAPh

w

22

given data size, because the computation varies as type of data and its distribution varies. For example, in

the stereo match algorithm, the computation is more where feature points are dense, and is comparatively

small where number of feaaues is small and sparsely distributed (Figure 4).

In the algorithms presented in the previous section, the data structures and and computations can be

divided into two categories; namely, regular and uniform; and irregular and non-uniform. In the first

category, computation is uniformly disu'ibuted across the input domain, and it is data independent. For

example, feature extraction involves regular and uniform computations. On the other hand, all the matching

algorithms are data dependent and the computation has a non-uniform distribution across the input domain.

For example, in stereo and time matching algorithms, computation depends on the number of features

(which is image data dependent), and distribution of features (spatial relationship of the features). The

computation is more where features are densley distributed compared to where same number of features

are sparsley distributed.

In a vision system, it is important to efficiently allocate resources and perform load balancing at each

steptoobtainany significantperformancegainsoverall.An importantcharacteristicofsuchsystemsisthat

the input data of a task is the output of the previous task. Therefore, while computing the output in the pre-

vious task enough knowledge about the data can be obtained to perform efficient scheduling and load

balancing.

Consider a parallel implementation of a task on n processor parallel machine. Let Ti (1 _i _n)

denote the computation time at processor node i. Then the overall computation time for the task is given by

Tmx = max{T 1,...,T_ (7)

The total wasted time (or idle time) Tw is given by

i=n

Tw - _ (Ymax - Ti) (8)
i=1

If Tma x - T i for all i, 1</_, then the task will be completely load balanced. Another measure of imbal-

ance is given by the variation ratio V,

Tmax

V = Tn_m Tn_m = n'im(T1, T_ (9)

The goal in performing load balancing is to minimize Tw, or move V as close to 1 as possible. In the best

case,Tw =Oor V= I.

23

If Tseq is the time to execute the same task on a sequential machine then the speedup is given by

r,,q

Therefore, by minimizing Tw, the achievable speedup can be maximized. In the following we dis-

cuss such techniques, and in the next section we present the performance results for a parallel implementa-

tion of algorithms in the motion estimation system.

3.1.1. Uniform Partitioning

Data decomposition using uniform partitioning performs well as a load balancing strategy for input

data independent tasks, because equally dividing the data distributes the computation equally among pro-

cessors. If total input data size is D then total computation time to execute a task is T = kxD, where k is

determined by the computation at each input data point. For example, in convolution of an image with

m>O'n kernel, k -- 2xm 2 floating point operations. Hence, for an n node multiprocessor, the data decom-

position methods to balance the computation is to make the granule size to

D
di = -- (II)

n

For dam independentalgorithmssucha partitioningguaranteesequaldistributionof computation

among processors. Therefore, if communication time can be minimized, then optimal performance can be

obtained on a given multiprocessor.

3.1.2. Static

When computation is not uniformly distributed across the input domain, and is data dependent, uni-

form partitioning does not work well for load balancing. Normally, computation depends on significant

data elements in a partition. Many vision algorithms exhibit this behavior. For example, in stereo match,

hough transform etc., the computation is proportional to the number of features (edges) or significant pixels

in a granule rather than on the granule size. Therefore, equal size granules do not guarantee load balanced

partitioning because of the data dependent nature of the computation. In many such algorithms, the com-

putation time for a granule 05, Ti, is proportional to a certain extent on the granule size (fixed overhead to

process a granule), and to the number of significant data in a granule. That is,

24

Ti = Axdi +Bx_ (12)

where, di is the granule size, j_ is a measure of significant data in granule (i), and A and B are arbitrary

constants which depend on the algorithm. The objective is to divide the computation among processors

such that each processor receives equal measure of computation. One way to assign a granule to a proces-

sor is to compute the total measure of computation and partition is as follows:

i=g

YA i+B×A
i=/ (13)

Ti=
n

wbete, g is the total number of granules in the input domain (Note that the number of granules for the

cmrent task is n for an n processc¢ system).

For example, consider computing hough transform of an edge image to detect line segments. If there exists

a line whose normal distance from the origin is r, the normal makes an angle 0 with the x-axis then if a

point (x,y) lies on that line, the following Equation is satisfied.

r = xcos 0 + ysin 0

r and 0 are quantized for desired accuracy and then for each significant pixel (where there is an

edge), r is computed for all quantized 0 values. If two partitions of equal size contain different number of

edge pixels, then the amount of computation will be different for the two partitions, despite them being

equal in size. In fact, the computation is directly proportional to the number of edge pixels in a partition.

One way to perform static load balancing is to decompose the input data such that each partition contains

an equal number of edge pixels. The computation to recognize this pardoning can be performed in the task

in which edges are detected by keeping a count of the number of edges detected by a processor. Note that

it is important to compute the statistics on the fly when edges are detected to guarantee low overhead. If the

same statistics are gathered by sequentially scanning the input data then the overhead can be significant.

Once a task is completed, the data can be reorganized such that the number of edges with each processor is

in the interval (Za _ 5, --Za + _), where Za is the total number of edges detected in the image, and _ is
n n

determined by the minimum granule size from fixed overhead considerations.

25

3.1.3. Weighted Static

When the computation in a granule not only depends on number of significant data points in the input

domain, but it also depends on their spatial relationships, then data distribution needs to be taken into

account as a measure of load to perform load balancing. For example, in stereo matching or time matching,

not only does the computation depend on the number of zero crossings, but it also depends on their spatial

dislribution. If the zero crossings are densely spaced, then the computation will be more than that if the

same number of zero crossings are sparsely distributed (refer to Figure 4). The reason is that if the zero

crossings are densely packed, then more number of zero crossings need to be matched with each

corresponding zero crossing in the other image, whereas less number of zero crossings need to be matched

if they are sparsely distributed. Hence, the computation also depends on the spatial density (such as

features/row). That is,

Ti = Axdi + B×wi×di (14)

where w i is the feature dependent spatial density. For example, if the minimum granule size is a row of the

input data then w i = r_, where ri is the number of features in row i, and [3 is a parameter, 0<_<1.

[3= 0 means that the computation is independent of how the features are distributed within a row. There-

fore, to divide the computation equally among n prncessors, the following heuristics:an be used.

i=R

Y. A×ai+ B×wixai
i_--o (15)

ri=
tl

where, R is the number of rows in the image. Note that the above heuristics approximate the load and do

not exactly divide the computation among processors.

For example, in the stereo match computation, while partitioning the data among processors, a

weight is assigned to each row as a function of number of features in the row. This weight represents the

feature density. Note that using a row as the smallest granule avoids the communication overhead because

search space for stereo matching is one dimensional, and therefore, if the granule boundary is one row then

there is no need for communication.

3.1.4. Dynamic

Above three methods use the knowledge about the data when it is produced to perform load balanc-

ing for the next task. However, once decomposition is done, then the data is not reshuffled. Therefore, we

26

consider the above methods as knowledged based static load balancing schemes. In the dynamic scheme,

the data is decomposed into finer granules such that the number of tasks, (that is number of independent

granules) M, is much larger than the number of processors.

At execution time the processors are assigned these tasks dynamically by a designated scheduler

from a task queue containing these tasks. Processors are assigned new tasks as they finish their previously

assigned tasks, if there are more tasks left to be assigned. However, the knowledge obtained from the pre-

vious step can be used again to anticipate the completion of a task. in order to assign a new task to a pro-

cessor. That is, the task assignment can be pipe"ned, thereby reducing the overhead of dynamic assign-

menL

The following procedure illustrates the dynamic assignment of tasks onto the processor. The pseudo

code essentially illustrates what the scheduler does in order to perform dynamic load balancing. The

number of tasks (max_tasks) are determined during the execution of the preceding step in the system, and

the taskqueue contains all the tasks including the computational information associated with each task.

Initially, the scheduler assigns few tasks to each processor. The number of tasks to be assigned initially is

a parameter (pipe_line_no). If this parameter is 1, it implies that there is no anticipatory scheduling. In

other words, a processor is assinged a new task only when it finishes the task it is currently executing. A

task is assigned to a processor only if the task contains significant computation. For example, in stereo

match, if a task's data does not contain any zero crossings, then the task can be discarded because it is not

going to produce any useful information anyway. In a blind scheme, where little is known about a task, the

task will be assigned, which is an overhead, and can be avoided by using the knowledge obtained from the

previous steps. Whenever a processor Pi completes the current task, it sends a compl_rnsg to the scheduler

which assigns Pi a new task if the task_queue is not empty. Once the task_queue becomes empty, the

scheduler sends a term_m._g (terminate message) to all the processors. Upon receiving a term_msg from the

scheduler, processors complete the remaining tasks in their task_queues, and sends a term_msg to the

scheduler, terminating the computation. Note that by using the pipe_line_no, anticipatory dynamic schedul-

ing can be performed, and a processor need not be idle when a new task is being assigned. By using this

parameter, the amount of initial static assignment, and dynamic assignment can be controlled. Figure 17

shows the partitioning for the above described strategies for stereo match algorithm.

27

.

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
3O.
31.
32.

Dynamic SchedulingofTasks

/*InitialAssignment*/

curt task = O;
for j ffi! to j <= pipe_line..no do

for i = 1 to i ffinum_proc do
if comp(task_qneue(cun'_task)) > 0

schedule curt"task at proc. Pi;
curt_task= cun'_task+ 1;

else

end_if

curt_taskfficurt_task+l;
go to4.

end for
end for

l*Schedu]ing*l

done ffifalse; k ffinum .proc;
while not done do

wait for msg from a processor;,
receive m,_g;
if (ms& fficompl_msg)

P i = sender processor;,
if curr_task < max_tasks

if comp(task_queue(curt_lask)) > 0
schedule curr_ta__ at proc. Pi;
curt task = curt_task+l;

else

curt_task = curr task+l;
go to 19.

else

send term msg to Pi.
else if(msg = term_msg)

k=k- I;

if(k<=O)
done = true.

28

Uniform Partitioning
Static

No. of Tasks ffiP No. of Tasks ffiP

Weighted Static

1

2
"-T

4 f----.----.-

.5 _ 6

7 r------
8

1

q

i

M

Dynamic

No. of Tasks = P No. of Tasks = M
M_P

Example for 8 Processors

Figure 17 : Load balancing strategies

4. Parallel Implementation and Performance Evaluation

This section presents a parallel implementation of the algorithms that are part of motion estimation

system and describes the performance of the algorithms and load balancing strategies. The algorithms were

implemented and evaluated on a hypercube multiprocessor.

4.1. Hypercube Muitiprocessor

A hypercube multiprocessor system of size P has P processors, where P is an integral power of 2. P

processors are indexed by the integers 0,...,P-1 and the following criteria is satisfied. If the processor

numbers are represented by log2(P) bits then two processors are connected by communication links if

and only if their bit representation differs by exactly one bit. Therefore, each processor is connected to

log2(P) processors with direct communication Inks. Diameter of the hypercube of size P is log2(P)

(diameter is the maximum distance between any two nodes). Figure 18 shows a 4-dimensional hypercube

29

multiprocessor.

A typical commercially available hypercube multiprocessor system consists of a host processor and

node processors. The host processor serves as the cube manager, provides interface with the external

environment, provides input-output of data and program. We used Intel ipsc/2 hypercube multiprocessor

consisting of 16 nodes. Each node consists of an Intel 80386 processor, Intel 80387 co-processor, 4 mega-

byte memory, and a communication module.

4.2. Feature Extraction

Features used for stereo match algorithms are the zero crossings of the convolution of the image with

Laplacian. Zero crossing computation involves 2-D convolution and extraction of zero crossings from the

convolvod image. Since convolution is a data independent algorithm uniform partitioning is sufficient to

evenly distribute the computation. The mapping is a division of NxN image onto P processors. Each pro-

cessor computes the zero crossings of share of N2/p pixels (Equation I I). Data division onto the proces-

sors is done along the rows. This mapping reduces communication to only in one direction. The reason is

that 2-D convolution can be broken into two 1-D convolution [7]. This not only reduces the computation

from W 2 sum of products operations per pixel to 2×W sum of product operations per pixel (W is the con-

volution mask window size), but also reduces the communication requirements in a parallel implementa-

tion if the dam partitioning is done along the rows. There is no need for communication when convolution

is performed along the rows.

Figure 18 : A 4.-Dimensional hypcrcuhe

3O

Table 1 shows the performance results for the above implementation for an image of size 256×256

and convolution window of size 20x20. First column shows the number of processors in the cube(P).

Second column represents the total processing time (tproc) for convolution. Column 3 shows the number

of bytes communicated by a processor to the neighboring processor, and column 4 shows the correspond-

ing communication time which is small compared to the computation time. The second half of the table

shows the computation time for extracting zero crossings from the convolved image. Corresponding

speedups are also shown.

It can be observed that almost linear speedup is obtained for convolution. Two factors which conai-

bute toward this result are that communication overhead is relatively small, and communication is constant

as the number of processors increases. However, the speedup obtained in the elapsed time, which includes

the program and data load time also, is sub-linear due to the following reason. The hypercube

multiprocessor's host does not have a broadcast capability, and therefore, the overhead of loading the pro-

gram increases linearly with the number of processors. However, data load time increment with the

increase in the number of processors is comparatively small because amount of data to be loaded to one

processor decreases as the number of processors increases. The only increment in data load time results

from the number of communication setups from the host to the node processors, which increases linearly

Table 1 : Performance for feature extraction (zero crossings)

Computation for Convolution and Zero Cromin_s
Convolution Window Size = 20x20

No. Proc.

i

J

1
2
4
8

16

Cony.

Comp.
Time(see.)

109.0
54.76
27.51
13.88
7.07

Cony.

Comm.

S_tes
0

2816
5632
5632
5632

Cony.

Comm.
Time(ms.)

0
13
36
36
36

Cony.

Total
Time(sec.)

109.0
54.78
27.55
13.92
7.11

Collv.

Speed up
1
1.98
3.95
7.83

15.33

ZC

Comp.
Time(sec.)

6.47
3.23
1.66
0.85
0.42

ZC

Speed Up
1
1.99
3.89
7.60

15.25

Feature Extraction Performance (Ela
No. Proe. Elapsed

1
2
4
8

16

Time(sec.)
116.2
58.8
30.1
16.1
9.6

)sedTime)

Speed up

1
1.97
3.86
7.22

12.1

31

withthenumberofprocessors.

4.3. Matching Features

This task involves matching features in stereo pair of images. As discussed in section 2, the epipolar

constraintlimitsthesearchfora matchinthecorrespondingimage toonlyinhorizontaldirection,.i.e.,

along the rows in the zero crossings of the image. Thus data pattioning along the rows for parallel imple-

mentation results in no communication between node processors as long as each partition contains an

integral number of rows.

The computation involved in stereo matching algorithm is data dependenL The computation varies

across the image because it depends on the number of zero crossings, distribution of zero crossing across

the image, and distribution of zero crossings along the epipolar lines. Therefore, pardoning the dam uni-

formly among the processors (i.e. assign each processor equal number of rows) may not yield expected

speedups and processor utilization. A processor which has very few zero crossings, and sparsely distributed

zero crossings will be under utilized, whereas a processor with a large number of zero crossings, and

densely distributed zero crossings will become a botdeneck.

We used uniform partitioning, static load balancing, weighted static and dynamic load balancing

schemes to decompose the computation on the multiprocessor. Static load balancing can be achieved by

keeping a count of the zero crossings with each processor when the previous task (feature extraction) is

executed. At the completion of the task, the data is reorganized using this information, and using the tech-

niques described in the previous section.

Figure 19 shows the distribution of the computation times for 8 processor case. The X-axis shows

the processor number, and the Y-axis shows the computation time for each scheme. As we can observe,

uniform partitioning does not perform well at all because the variation in computation time is tremendous,

and therefore, performance gains are minimal. The static load balancing scheme (shown as dashed bars)

performs much better than uniform partitioning, but variation in computation times is still significant

because the computation also depends on the dis_bution of zero crossings. The weighted static scheme

performs better than static, and further reduces the variation in computation times. Note that these schemes

only measure the load approximately, and therefore, will not divide the computation exactly uniformly.

Furthermore, minimum granularity is a row boundary in order to avoid communication between

32

Time

(ms.)

7000--

oo

oo

n!!
la ::
lJ::
tt::
in::
io':

ll:"tl T"

I
o

n

ii

Ol

tl

it::
at ::
Jl::
it::
or::
II ":

It ".

ta::
II ::

il..

II :"

II ::

II ::
nil _-

I
1

I-1 n

I-I If II

II II II

II II I1::

II II I'"

II .. II .. II ::

II:: II-; I''
II ""

II:." II,, II ,,'"

II:; I1.. I1::
.o

II;; II-. II ..

I1:: I1.,i I1::

I1:: I1-'! I1::

I1:: I1::

11;; II::

I I _, _, If::

II;: II::

io;; io::] it::

2 3 4

II

iiII

II

It::
ol::

II ::

II ::

na ::
It ::

It::

,,]]l|

,,!:.i I

I
$

Uniform(J_d)

Susie(mud_d)

W. SLide(d<xu_l)
Dyn_r_ic(d_ksolid)

:: rl
• " io::

I1::

ol::
oi::
nt::
to::
oo::
or::
ti::
ll::
II::
tt::

11::
}t::
_o::

lllli"

6

.o

..

..

::
::
::

hi!
uu::
on::
It::
I1::

tn::iJ::
I
7

Figure 19 : Distribution of computation times for stereo match (1)--8)

processors. Finally, for 8 processor case, dynamic scheme performs the best. Table 2 summarizes the dis-

tribution for the 8 processor case. The Table shows the computation time, variation ratio, and improve-

ment ratio for each processor under all four methods. For example, the variation ratio is 44.25 for uniform

partitioning, is 2.71 for static load balancing, is 1.50 for weighted static, and is 1.09 for dynamic load

balancing. Improvement ratio is the ratio of speedup obtained with load balancing to that of uniform parti-

tioning. The computation times shown include all the overhead of load balancing schemes. Figure 20 dep-

icts the speedup graph for varying size of multiprocessor from 1 processor to 16. We observe that uniform

partitioning does not provide any significant gains in speedup as the number of processors increases.

Dynamic scheme performs the best among all the schemes, and the two static scheme perform comparably

with the dynamic scheme. We believe that as the number of processors is increased, the two static schemes

will move even closer to dynamic scheme, or even perform better than the dynamic scheme, because for a

larger multiprocossors, the overhead of dynamic scheme will be greater.

33

Table 2 : Distribution of computation rimes for stereo match

Computation Time Distribution for Stereo Match (P=8)
Pro_.

NO.

o
1
2
3
4
5
6
7

Max.

Uniform
Partitioning

Time(ms.)
364
164
878

7258
6827
5207

762
312

7258

Static

Time (ms.)
1402
3333
3066
3327
3371
3269
3O63-
1243

3371

Static

Weighted

Time (ms.)
2439
26O6
2219
2277
2798
3328
2864
3223

3328

Dynamic

Time (ms.)
2890
2786
298O
2967
2818
2913
28O3
3051

3051

Min. 164 1243 2219 2786

Variation
ratio 44.25 2.71 1.50 1.09

Improvement
ratio 1 2.15 2.19 2.38

34

14

12-

10-

m

Performance (Stereo Match)

W.Static(...)

ssSSt

S S °°

• • ..";"

• .*S

• *°S

• **S
°*J

S °*S
J ..j

J °°i'

S °j

• • ._J

Dynamic ," .>'>
, ..J, Static

J .#
• ,J'

"./
6_ jS ,t'

oi

I I I
1 2 4 8 16

Number of Processors

Figure 20 : Speedups for stereo match computation

4.4. Time Match

The computation in rime match algorithm is similar to that in stereo match except the search space is

two-dimensional, and the input to the algorithm is stereo match output. Other difference is that the number

of significant points in the input data is much smaller than that in stereo match, because a great deal of

input points get eliminaI_ in stereo match. Table 3 shows the distribution of the computation times for the

16 processor case. We only present uniform partitioning and static load balancing cases. The most impor-

tant observation is that uniform partitioning performs worse than that in the case of stereo match, and static

load balancing performs better.

The Table shows how the measure of computation (number of zero crossings left from stereo match

step) is divided among the processors in [he two cases. It is cleat that the number of zero crossings are very

evenly distributed (within the minimum granule of one row consuain0 in the static case, whereas they are

lumped with a few processors in the uniform partitioning case. Figure 21 shows the speedup graphs for the

two schemes for a range of multiprocessor sizes. The speexlup gains for the load balanced case is very

35

Table 3 : Distribution of computation time for time match step

Computation for Time Match (Pro¢. = 16)

Proc. Uniform Partitioning With Load Balancing

No.

Matching Total No. Matching Total

(See.) (See.) Zcs (See.) (See.)
i

0.140

1

2

3

4

5

6

7

0.03

0.02

0.O2

0.02

3.61

13A5

5.09

0.22

0.14

0.13

0.13

0.13

3.72

13.56

5.20

3

2

0

0

0

21

55

2O

9.35

12.38

13.12

14.23

11.88

10.93

12.82

12.16

I0.00

12.55

13.21

14.27

11.91

10.95

12.85

12.19

8

9

10

II

12

13

14

15

Uniform

Balanced

26.65

45.85

73.82

27.20

0..31

0.11

0 .42

0.08

26.76

45.97

73.93

27.32

0.42

0.22

0.53

0.10

93

182

259

121

3

I

4

0

11.41

10.63

13.89

13.69

15.07

15.70

14.36

5.21

11.44

10.65

13.91

13.71

15.09

15.72

14.39

5.68

Max. MIn. Variation Speed Improvement

time(see.) time(sec.) ratio up ratio

73.8'2 0A0 738 2.69

15.72 5.68 2.76 12.63 4.7

No.

Zcs

47

50

53

43

45

44

53

51

45

40

50

44

43

56

56

43

36

Speed
Up

12-

10-

8_

6_

4_

2_

Performance (Time Match)

S

f

S

S

S

J

S

/

Load Balanced
S'

S

J

S

J
S

J
S

S
S

S

I 1 I
2 4 8 16

Number of Processors

Figure 21 : Speedup for time match step

significant over the uniform partitioning case. We computed the overhead of performing knowledge based

static load balancing, and the overhead was 3 ms., which is negligible compared to the computation time,

and the performance gains are significant.

4.5. Second Stereo Match

This step involves stereo match compu_ion for features from images at time instant ti+ 1 after time

point correspondence is established between images at time t i and ti+ 1 . The matching is similar to that in

first stereo match except that it need to be done only at those points at which time correspondence has

already been established. Consequently, the number of features to be matched ate much less than that in the

first computation, and hence, the importance of load balancing is further increased. Figure 22 depicts the

distribution of computation times for the second stereo match step. The three load balancing algorithms

used in this case are Uniform Partitioning, Static and Dynamic. We observe from the Figure that uniform

partitioning does not perform well compared to the other two schemes. The variation in computation time

is significant, and the static and dynamic schemes perform comparably.

37

Tim6

(_ec.)

20-

15-

10-

5-

0

n

ii..

ii:"

ti::

ii..

ll::
o.

ii ,.

it:"

ii ::

I
o

r"l

|
°°

|.,

°.
i..

i:-*

i':

I
1

Uniform(solid)

Static (c_shed)

D_mic (doued)

I'I

I::

::.. nii ,,::
"" ":: 'i!I"I ": II ''

H"IIII ll"::II I1-''* I1".:

II II :: II ::

II II :-* II :'.

ii II "_'_ il "_:

I I I
3 4 3

I"1

.°

o°n

II

I! ::

Jr:: ::

_IL "° __I, ::

I I
2 6

°.
°-°.

II-. o.
II .-

II ::

II ::

I
7

P_cl_I:$101'i

Figure 22 : Distribution of computation times for second stereo match (P=-8)

Figme 2.3 presents the speedups for the same algorithm for various multiprocessor sizes. The Figure

shows that the gains from these load balancing schemes are very significant over uniform partitioning. One

important observation can be made by comparing results in Figures 20 and 23. Note that the performance

of uniform partitioning in the second stereo match is much worse than that in the first stereo match. For

example, for 16 processor case, the speedup in the first case is 5.55, whereas for the same multiprocessor

size, the speedup is only approximately 2.3 in the second case. Therefore, as the computation progresses

from one step to the next in a vision system, the gains of these load balancing schemes become increas.

ingly significanL

38

Speed
Up

14

Performance (Stereo Match)

S

- Uniform

,o.O,O°o°'°

I
1 2 4 8 • 16

Number of Processors

Figure 23 : Speedups for second stereo match

4.6. Summary of Results

In summary, the following important observations can be made from the results presented in this sec-

tion. First, the improvement in perfo_ (such as utilization and speedup) itself increases using the

load balancing schemes as the number of processors increases. Therefore, performance gains are expected

to be higher for larger multiprocessors. Second, in an integrated environment, the overheads of such

methods are small because measure of load can be computed at run time as a bi-product of the current task.

Finally, though we showed the performance results of the implementation on the hypercube multiproces-

sot, these methods can be applied when algorithms are mapped on any medium to large grain multiproces-

sor system, because these techniques are independent of the underlying multiprocessor architecture.

Consider the overall performance gains fo¢ the entire system. As the computation progresses from

one step to the next, uniform partitioning performs worse because the data points reduce, but the computa-

tion at each point increases. Hence, the gains of using parallel processing are minimal. However, the load

W

w

39

balancing techniques recognize the data distribution at each step, and the data is decomposed using the dis-

a-ibufion. Therefore, performance gains are expected to improve as the computation progresses in an

integrated environment. For example, consider zero crossing, stereo match, time match, and second stereo

match steps. In zero crossing computation, uniform partitioning performs well and load is balanced.

Hence, the improvement ratio is 1. For stereo match the improvement of static over uniform partitioning is

2.15 for 8 processor case, and is 2.22 for 16 processor case. Similarly, for time match step, the improve-

ment of static load balancing for 8 processor case is 3.38, and for 16 processor case, it is 4.2. Therefore,

the improvement in performance itself increases as the number of processors increases as well as when the

computation progresses in from one step to the next in a vision system.

5. Concluding Remarks

The first part of this paper presented algorithms for a motion estimation system with an emphasis on

obtaining point correspondences. The algorithms are non-iterative, and obtain matched features points

among stereo images at any two consecutive time instants. The system consists of the following steps: 1)

extraction of features, 2) stereo match of images in one time instant, 3) time match of images from dif-

ferent time instants, 4) stereo match to compute final unambiguous points and, 5) computation of motion

parameters. Since, zero crossings points are used as the feaaa-es for matching, there are only about 7% (as

shown in Table 4) of the total number of points (65536) involved in matching process. Consequently, the

algorithms save considerable amount of computation in solving the correspondence problem. Table 5

shows the number of unambiguous matched point pairs at various stages. The number of matched point

pairs among the images is 262 which seems enough for motion estimation. Currently, we are trying dif-

ferent motion parameter computation algorithms on the matched point pairs.

Second, we presented techniques to perform efficient data decomposition and load balancing for

vision systems, for medium to large grain parallelism. Two important characteristics of these techniques

are that they are general enough to apply to many such systems, and that they use statistics and knowledge

from the execution of a task to perform data decomposition and load balancing for the next task in the sys-

tem. The advantages of such schemes are as follows. First, these techniques use characteristics of the

tasks and the data, and therefore, work well no matter how the data changes. Second, many vision systems

consist of similar tasks, and exhibit similar computation flow, and therefore, these techniques can be used

Table 4 : Number of feature points in each image

Image no.

17 4185

r7 4348

18 4255

r8 4294

of z. c. pattern pts.

total number of points in each image = 65536

4O

Table 5 : Number of unambiguous matched point pairs at various matching stages

total
unambiguous
matches

stereo matching
17, r7

625

time matching
17, 18

373

stereo matching
18, r8

262

among
17, r7, 18, r8

262

in any system.

Finally, the performance of the proposed techniques was evaluated by using a parallel implementa-

tion of the motion estimation system algorithms on a hypercube mulfiprocessor system. The results show

that using uniform partitioning without considering the computations involved, parallel processing does not

provide significant performance improvements over sequential processing. Furthermore, by applying the

proposed data decomposition and load balancing techniques significant performance gains (as much as 6

fold)can be obtainedover uniformpartitioning.

41

REFERENCES

[11

[21

[3]

[4]

[51

[6]

[71

[8]

C. Weerns, A. Hanson, E. Riseman, and A. Rosenfeld, "An integrated image understanding
benchmark: recognition of a 2 1/2 D mobile," in International Conference on Computer Vision and
Pattern Recognition, Ann Arbor, MI, June 1988.

Alok N. Choudhary, "Parallel architectures and parallel algorithms for integrated vision systems,"
in Ph.D. Thesis, University of Ilfinois, Urbana-Champaign, Agust 1989.

Alok Choudhary and Janak Patel, "A parallel processing architecture for integrated vision
systems," in 17th Annual International Conference on Parallel Processing, St. Charles, IL, pp.
383-388, August 1988.

Mun K. Leung and Thomas S. Huang, "Point matching in a time sequence of stereo image pairs,"
in Tech. Rep., CSL, University of lllinois, Urbana-Champaign, 1987.

Alok N. Choudhary, Subhodev Das, Narendra Ahuja, and Janak H. Patel, "Surface reconstruction
from stereo images : an implementation on a hypercube multiprocessor," in The Fourth Conference
on Hypercubes, Concurrent Computers, and Applications, Monterey, CA, March 1989.

K. S. Arun, T. S. Huang, and S. D. Blostein, "Least-sqaure fitting of two 3-D point sets," IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 9, pp. 698-700, September 1987.

A. Huertas and G. Medioni, "Detection of intensity changes with subpixel accuracy using
Laplacian-Gaussian masks," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
PAMI-8, pp. 651-664, September 1986.

Y. C. Kim and J. K. Aggarwal, "Positioning 3-D objects using stereo images," Computer and
Vision Research Center, The University of Texas at Austin.

J

w

Q_
O_

vl

r-
La

u'l

mOZ

